
 

NORTHWEST NAZARENE UNIVERSITY 

  

  

  

  

  

Using Pixel-Based Classification and Change Detection to Map Burn Extent & Severity  

from Hyperspatial Drone and Very-High Resolution Satellite Imagery. 

  

  

  

  

  

THESIS 

Submitted to the Department of Mathematics and Computer Science 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF SCIENCE 

  

  

   

Cole Edward McCall 

2023



 

THESIS 

Submitted to the Department of Mathematics and Computer Science 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF SCIENCE 

   

 

By  

Cole McCall 

2023   

 

  

Using Pixel-Based Classification and Change Detection to Map Burn Extent & Severity  

from Hyperspatial Drone and Very-High Resolution Satellite Imagery. 

 
Author:                                                                                                          
                     Cole McCall 
  
Approved:                                                                                                                        
  Dale Hamilton, Ph.D., Associate Professor of Computer Science, 
                     Department of Mathematics and Computer Science, Faculty Advisor 
  
Approved:                                                                                                     
                     Thomas McCall, Ph.D., Department Chair of Theology, 

Asbury Seminary, Second Reader 
  
Approved:                                                                                                     
                     Barry L Myers, Ph.D., Chair, 
                     Department of Mathematics and Computer Science 
  



iii 
 

ABSTRACT 

Using Pixel-Based Classification and Change Detection to Map Burn Extent & Severity 
from Hyperspatial Drone and Very-High Resolution Satellite Imagery. 
  

MCCALL, COLE (Department of Mathematics and Computer Science), 
HAMILTON, DR. DALE (Department of Mathematics and Computer Science), 
MYERS, DR. BARRY (Department of Mathematics and Computer Science). 

          
Over the past few years, the size and severity of wildland forest fires have continued to 
increase, causing more damage and destruction around the world. New methods have 
been developed to utilize machine learning algorithms to map forest fire burn extent and 
fire severity using aerial imagery. Algorithms such as the Support Vector Machine 
(SVM) can be used to classify pixels as either black ash, white ash, or unburned, while 
the Mask Region-Based Convolutional Neural Network (MaskR-CNN) can be used to 
find and map tree objects. The results from these classifications can be used to help local 
wildland fire managers assess the burned area and create a recovery plan. 
  
This research has several steps: 1) improving the current method for mapping burn extent 
with hyperspatial drone imagery, 2) using the same (or similar) methods to determine if 
wildland fire burn extent can be mapped with high-resolution satellite imagery, 3) 
evaluating how spatial and spectral resolution impacts the accuracy of the classification, 
and 4) try to develop new methods that involve less (or no) training data, such as 
unsupervised change detection. The results of each step were promising, creating much 
more accurate classifications of wildland fire burn extent than can be obtained by other 
common products such as LANDFIRE. This research will continue, likely moving in a 
direction that further examines the use of unsupervised and self-supervised machine 
learning, which greatly reduces the training data needed. 
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Overview 

This research contains four components, each of which is part of Northwest Nazarene 

University’s ongoing FireMAP project. The first component of this research took place 

from May 2021 to September 2021 as part of NNU’s summer research program, 

intending to improve the process for mapping burn extent from 5cm resolution 

hyperspatial drone imagery. Based on previous research, machine learning algorithms 

such as the Support Vector Machine (SVM) have been used to accurately map the burn 

extent of wildland fires [1]–[3], whereas a Mask Region-Based Convolutional Neural 

Network (Mask R-CNN) could be used to detect tree objects [4]. Since surface vegetation 

on the ground may be obstructed by tree crowns above, the aerial imagery captured by 

drones may produce an inaccurate mapping of the burn extent, observing the tree crown 

on top instead of the possibly burned vegetation underneath [2], [5]. To enhance the burn 

extent classification, a program was developed to find all tree objects completely 

surrounded by burned areas and reclassify those tree objects as burned regions since the 

areas underneath the tree crown were burned, even though the tree crown itself did not 

burn. The results of this project were published in an article in the Remote Sensing 

journal titled “Mapping Forest Burn Extent from Hyperspatial Imagery Using Machine 

Learning” [5]. 

 

The second component is an ongoing process that started immediately after completing 

the first work. Even though hyperspatial drone imagery can accurately map burn extent, it 

can be difficult and time-consuming to collect/acquire drone imagery. Additionally, 

mapping the burn extent involves utilizing an SVM classifier that must be trained to the 
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image, a MaskR-CNN that must be trained to detect trees, and an additional program to 

enhance the burn extent created by the SVM classifier. For these reasons, the FireMAP 

research team began to study how substituting 5cm spatial resolution drone imagery for 

lower 1.5 to 3m spatial resolution satellite imagery affected the accuracy of mapping burn 

extent. While this high-resolution satellite imagery has a lower spatial resolution (~1.5 to 

3m instead of 5cm), the satellite imagery has a higher spectral resolution, containing 

eight multispectral bands as opposed to the typical Red, Green, and Blue (RGB) bands of 

an image. When using satellite imagery instead of drone imagery, the higher spatial 

resolution is swapped for a higher spectral resolution, introducing bands like Red Edge, 

Yellow, and Near Infrared into the mix.  

 

The changes in resolution between images created a third component in this research: 

evaluating how spatial resolution and spectral band selection impact the accuracy of a 

burn extent classification. Two sets of satellite imagery were used to explore these ideas: 

~1.8m spatial resolution Worldview2 imagery [6] and ~3m spatial resolution PlanetScope 

imagery [7].  A manuscript titled “Determination of Multi-Spectral Band Utility for 

Mapping Wildland Fire Burn Extent and Severity” is currently being developed, which 

involves evaluating spatial resolution and spectral band selection with Worldview2 

imagery. A separate manuscript for mapping burn extent from PlanetScope imagery is 

expected to begin development this summer. 

 

Finally, a separate component of this research was introduced at Frontier Development 

Lab (FDL) in 2022, where NNU’s summer researchers assisted in the FDL-US 2022 
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Wildfire Challenge. The wildfire research team was given a challenge by the U.S. 

Department of Energy to determine if “... ML-enhanced tools can be used to prevent fires 

from starting or new fires from combining to create mega-fires" [8, p. 2]. Similar to the 

previous components of this research, the FDL-US 2022 Wildfire team wanted to use 

machine learning algorithms to map burn extent from satellite imagery. However, this 

team wanted to use self-supervised learning instead of supervised learning methods that 

require large amounts of training data. Additionally, the wildfire team partnered with 

Planet, who gave the team access to ~3m spatial resolution PlanetScope imagery, with 

near-daily updates, which gave the team even more opportunities. This project aimed to 

use the PlanetScope imagery to perform daily wildfire change detection, which could 

then be used to predict wildfire changes in simulation. An advanced deep learning 

technique called contrastive learning was used to perform unsupervised change detection, 

which resulted in detecting burn area change. The results of this project were published in 

“Unsupervised Wildfire Change Detection based on Contrastive Learning” [9]. 

 

Background 

Currently, local fire managers are overwhelmed by the severity of wildland fires, lacking 

the resources to make informed decisions in an adequate measure of time. Regulations 

within the United States require fire recovery teams to acquire post-fire data within 14 

days of containment, including mapping burn extent [10]. Fire managers and recovery 

teams have been using Landsat imagery, which contains 8 spectral bands of 30m spatial 

resolution along with a panchromatic band (15m) and two thermal bands (100m) [11, p. 

9], [12]. Assuming that no clouds or smoke obstruct the view of the fire, Landsat imagery 
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can only be collected for a site once every 16 days, making it challenging to acquire data 

within the time required.  

 

Fire Monitoring and Assessment Platform (FireMAP) 

Over the past decade at Northwest Nazarene University (NNU), the Fire Monitoring and 

Assessment Platform (FireMAP) research team has successfully employed several 

methods to investigate and map wildland fire effects. The majority of this work revolved 

around using sUAS (small Unmanned Aerial Systems) to collect imagery with a spatial 

resolution of ~5cm and Red, Green, and Blue (RGB) spectral bands [2], then use machine 

learning algorithms such as the Support Vector Machine (SVM) to classify the imagery 

into two classes - burned and unburned pixels - creating a burn extent map [1], [13]. For 

the SVM classifier to work, it must be trained by hand-drawn polygons that inform the 

classifier what burned and unburned pixels are. Similarly, deep learning algorithms like 

the MaskR-CNN can be trained to find objects, such as trees, by annotating every object 

in hundreds of images. The resulting tree objects found by the MaskR-CNN could then 

be used to calculate the change in canopy cover, or tree mortality, by comparing the area 

produced from the detected tree objects to the pre-fire canopy cover estimate provided by 

LANDFIRE [4], [14].  

 

Machine Learning 

This research uses several machine learning algorithms to map burn extent and fire 

severity from various imagery products. Several terms will be defined to better 

understand how machine learning is applied in this space. Additionally, explanations of 
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the two particular machine learning algorithms used frequently in the research will be 

offered: the Support Vector Machine (SVM) and the Mask Region-Based Convolutional 

Neural Network (MaskR-CNN). 

 

In a presentation in the Advanced Database course, Dr. Dale Hamilton explained data 

science as “the exploration of data via scientific method to discover meaning or insight, 

and the construction of software systems that utilize such insight in a business context” 

[15]. Dr. Hamilton also helped provide some clarity about the terms artificial intelligence 

(AI), machine learning (ML), and data science (DS), specifically how the three terms are 

often used interchangeably but have different meanings. Artificial intelligence is an agent 

that observes percepts in the environment around the agent through sensors, makes a 

decision or calculation, and then performs an action on/within the environment. 

Essentially, artificial intelligence produces actions based on data. Machine learning, a 

subset of artificial intelligence, is a method of AI that learns from data and is used to 

make predictions. 

 

The MaskR-CNN and the SVM are examples of machine learning that implement 

supervised classification methods, where the user is required to “train” the model by 

providing examples of training data. While there are similarities, the MaskR-CNN is a 

supervised object classification method, whereas the SVM is a supervised pixel 

classification method.  
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 Using Drone Imagery to Map Burn Extent  

Despite Hamilton’s success in accurately mapping burn extent from drone imagery with a 

support vector machine [2], this study did not account for regions that experienced 

surface fire underneath tree crowns, as shown in Figure 1. Forested areas with high 

canopy cover can produce a drastic underestimate/underreporting of the burn extent, as 

tree crowns obstruct burned areas underneath, which can not be observed from aerial 

drone imagery. While the support vector machine classifier has difficulty mapping forest 

burn extent by itself, it can be used in combination with a tree object classification, 

finding all areas completely surrounded by burned pixels and reclassifying these tree 

objects as part of the burn extent, as shown in Figure 2. To find these tree objects, a Mask 

Region-Based Convolutional Neural Network (MaskR-CNN) can be trained, then used 

on the drone imagery. Reclassifying the areas that experience sub-crown surface fire 

(burned areas underneath tree crowns) produces an enhanced burn extent map, increasing 

the accuracy by nearly 30 percentage points. 

 
Figure 1 - Misclassified Areas that Experienced Sub-Crown Surface Fire 
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Figure 2 - Reclassifying Areas that Experienced Sub-Crown Surface Fire 

 

Since this project continued the FireMAP research at Northwest Nazarene University, my 

role included several tasks. First, validation data of the support vector machine 

classification was created in ArcGIS Pro using the Training Samples Manager. Two 

classes of polygons were hand-drawn in regions where the team was confident the pixels 

were either burned or unburned. Included in the burned class were tree crowns 

completely surrounded by burned pixels, as these regions experience a sub-crown surface 

fire. Using these polygons, the accuracy of the burn extent classification could be 

calculated. 

 

As expected, the initial classification produced a low accuracy of only 59%, as areas 

experiencing sub-crown surface fire were incorrectly classified. To account for this error, 
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the 2-class tree object classification (tree vs. not tree) was merged with the 2-class burn 

extent classification (burned vs. unburned), resulting in a 3-class (burned, unburned tree, 

unburned surface) raster with both tree and burn extent classifications. This 3-class raster 

was then used as input into a program that searched for pixels from the unburned tree 

class completely surrounded by pixels from the burned class and reclassified those pixels 

as burned areas. Accuracies were calculated again using the validation data, producing a 

slight increase in accuracy of 65%.  

 

At this point, the team noticed a crucial feature in the support vector machine that had not 

been observed previously. Even though the team was working with four different study 

areas that experienced a fire, the same support vector machine classifier was used to 

produce the burn extent classification. Since each image was taken at a different time 

after the fire, in a different location, it is not reasonable to train the classifier on one 

image and expect it to accurately classify other images, especially since there were 

noticeable differences in the burned areas of each image. For example, the burned areas 

in the Mesa fire were light gray pixels, whereas the burned areas in the hoodoo fire were 

black pixels. 

 

As a result, the team trained new support vector machines in ArcGIS Pro, annotating 

burned and unburned regions for each image. Once completed, each support vector 

machine classifier could be used to create a burn extent map of the image it was trained 

on, greatly improving the accuracy of the map (up to 77%). Once the burn extent 

enhancement tools (that addressed sub-crown surface fire) were rerun, the accuracy 
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improved even more (to 86%). To read more about the exact methodology used and the 

results found, please read Mapping Forest Burn Extent from Hyperspatial Imagery Using 

Machine Learning in Appendix C. Table 1 also briefly summarizes the various 

classification accuracies. 

Table 1 - Enhancing Forest Burn Extent Classification 

 Accuracy Specificity Sensitivity 

Original SVM Surface Burn Extent 
Classification 

59.5% 94.5% 24.3% 

Enhanced Reclassification based on 
Original SVM Classification 

65.8% 93.4% 38.4% 

Retrained SVM Surface Burn Extent 
Classifcation 

77.6% 95.3% 59.4% 

Final Reclassification with Burn Extent 
Enhancement Tools 

86.7% 94.6% 77.7% 

Overall Changes +27.2% +0.1% +53.7% 

 

Substituting High-Resolution Satellite Imagery for Drone Imagery 

While drone imagery is excellent for mapping the burn extent of small fires (<1000 

acres), it can be difficult (or nearly impossible) to acquire large amounts of drone 

imagery promptly. Fire managers may not have the time or resources to fly drones and 

obtain imagery, while wildland fires continue to grow in size and severity, making it 

somewhat impractical to use drone imagery on a larger scale. Even though slightly lower 

spatial resolution, satellite imagery available to researchers through NASA’s Commercial 

Smallsat Data Acquisition Program [16] and Planet’s Education and Research Program 

[17] can be substituted for hyperspatial drone imagery. Whereas drones capture images 

with 5 cm spatial resolution, products like PlanetScope and Worldview2 capture ~3m and 

~1.8m spatial resolution imagery. These products are fantastic alternatives to drone 
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imagery, allowing users to map much larger wildfires with similar accuracy. The 

specifications and examples of each image product can be seen in more detail in 

Appendix A.  

 
To begin this process, pre-fire and post-fire PlanetScope images were downloaded from 

the Planet Explorer webpage (planet.com/explorer) for the Mesa fire. The team 

prototyped classifications to determine the feasibility of using ~3m spatial resolution 

products for mapping burn extent. Like the section above, this process involved training 

an SVM classifier in ArcGIS Pro with hand-drawn training data, classifying the 

downloaded PlanetScope images, creating validation data of burned and unburned areas, 

and calculating the accuracy of the mapped areas. 

 

Additionally, students within the COMP3230 Spatial Analysis course were assigned to 

semester project groups, two of which included creating training and validation data of 

PlanetScope imagery. I led and instructed these groups on using the necessary tools in 

ArcGIS Pro, such as the Training Samples Manager, Image Classification, Tabulate Area, 

and more. The 2023 summer research team has been taking control of this project and 

will finish in May 2023, looking to publish soon after. 

 
 

Evaluating the Impacts of Spatial vs. Spectral Resolution 

As mentioned above, high-resolution satellite imagery (~1.8m to ~3m spatial resolution) 

is a great alternative to (~5cm spatial resolution) drone imagery for mapping burn extent. 

Despite the lower spatial resolution, satellite imagery contains additional spectral bands 

compared to the standard Red, Green, and Blue (RGB) bands acquired in drone imagery. 
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As a result, sacrificing spatial resolution adds spectral resolution (8 bands, including Near 

Infrared), introducing another question: how does spatial and spectral resolution impact 

the burn extent mapping accuracy? 

 

To answer this question, Worldview2 imagery of the Mesa fire was downloaded through 

the cad4nasa.gsfc.nasa.gov  portal using NASA’s CSDA program. Once the imagery was 

downloaded, a support vector machine classifier was trained in ArcGIS Pro to map the 

burn extent in the image. Validation data was also created to compare the classified 

image to the highly confident hand-drawn polygons of burned and unburned regions to 

determine the accuracy of the burned area.  

 

At the same time, the team created an Iterative Dichotomiser 3 program that could read in 

training samples, perform entropy analysis on the spectral bands, and construct a decision 

tree based on which spectral bands contained the most information content. The bands 

with the most information content could then be extracted and used as inputs for the 

SVM classifier, creating another classification. Additionally, all eight bands were 

reduced to three dimensions using Principle Component Analysis, creating a 3-band 

raster that could be used as input, along with a simple RGB image and the original 8-

band image. While the spectral resolution did not seem to have a significant impact 

(average burn extent accuracy of 94%), there was an increase in specificity of 6 

percentage points when comparing the RGB input to any of the other inputs that 

contained additional spectral resolution. This increase in specificity, which can be seen in 

Table 2, may occur in regions where the classifier has difficulty differentiating between 
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shadows and burned areas, with the higher spectral resolution being used to distinguish 

between those classes more accurately. 

 

Table 2 - Burn Extent Classification Metrics from Various Worldview2 Inputs 

Input Layer Accuracy Specificity Sensitivity 

Worldview2 RGB Bands 91.37%  86.25% 94.72% 

All 8 Worldview 2 Bands 94.44% 92.23% 95.89% 

PCA-Transformed Bands 95.25% 92.26% 97.20% 

ID3-Selected Bands 94.97% 92.15% 96.81% 

Average 94.01% 90.72% 96.16% 

 

The results of this work are currently being published in the Remote Sensing journal and 

a preview of the document is available in Appendix C. 

 

Mapping Wildfires with Unsupervised Learning Methods 

Even though high-resolution satellite images can be used for mapping burn extent with a 

support vector machine, there is a lot of work that needs to be done to train the SVM. For 

each area of interest that will be mapped, a separate SVM needs to be trained, requiring 

users to hand-draw training data for every fire, which is fine for a proof-of-concept but is 

not feasible for product users and creates more work for fire managers. Unsupervised 

learning allows researchers to develop a complex model with no training data that can be 

used to map the burned area of a wildfire. Fire managers (or other interested parties) 

could download/stream satellite images of their location, upload them to a program, and 

receive an accurate mapping of the wildfire area. With PlanetScope images being taken 
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daily, this process could even be completely automated, sending burn extent maps to the 

users whenever a fire occurs. 

 

This process began by exploring various ways that machine learning could be used to 

map wildfires. Additionally, all sorts of imagery products were examined, from high 

spatial resolution products like PlanetScope (~3m) to medium resolution products like 

Sentinel (10-60m) or lower resolution products like MODIS (250-1000m). After several 

weeks of research, the NNU FireMAP team traveled to Mountain View, California, to 

meet the rest of the FDL-US 2022 Wildfire challenge team. This FDL team was 

sponsored by Frontier Development Lab (FDL), the Department of Energy (DOE), and 

Planet, and were asked to determine how “...we can use ML-enhanced tools to prevent 

fires from starting or new fires from combining to create mega-fire” [8]. After 2 weeks of 

discussion and planning, the team decided to research an unsupervised change detection 

approach for mapping wildfires. 

 

The first step was to start downloading large amounts of satellite imagery. Unlike the 

previous projects, where images were downloaded for one study area of ~1000 acres, this 

research required downloading daily imagery from five different study areas. Each of the 

fires lasted anywhere from 2 weeks to 4 months, with sizes ranging from ~30,000 acres 

to ~300,000 acres. Since so much data was required, multiple python scripts were 

developed to access Planet’s developer APIs, downloading up to 1 TB of data daily. 

Additionally, these scripts could be run from Virtual Machines (VMs) in the Google 
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Cloud Platform (GCP), keeping all the code and data in the cloud, improving download 

and access times. 

 

Each team member configured multiple VMs in GCP, with hardware specifications 

varying from a machine with a 1-core CPU and 2 GB of RAM, to a machine with a 128-

core CPU, 512 GB of RAM, and powerful GPUs. The team worked collaboratively 

worldwide with team members in Washington, California, Idaho, and Massachusetts in 

the United States, Turkey, the Czech Republic, England, and Portugal. Each team 

member was a subject matter expert in slightly different fields, so the team shared each 

other’s knowledge and experience to complete each task. 

 

Using contrastive learning, the team developed and trained a model for mapping wildfires 

with unsupervised change detection. This project's exact methodology and results have 

been submitted for publication and can be read in Unsupervised Wildfire Change 

Detection based on Contrastive Learning. 

 

Future Work 

Finding Ideal Spatial Resolution 

Despite the team's success in mapping burn extent from drone and satellite imagery, there 

are still questions regarding the ideal spatial resolution. Using 5cm hyperspatial drone 

imagery requires acquiring imagery by conducting aerial flights over burned areas instead 

of downloading or streaming imagery captured by a satellite. Even though the spatial 

resolution decreases when using satellite imagery instead of drone imagery, burned areas 
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can still be mapped with high accuracy using machine learning. More fine features, such 

as individual trees or small pockets of white ash, could be easily observed with drone 

imagery but are difficult to notice even with a human eye in satellite imagery. It is 

unreasonable to expect a machine learning approach to detect these regions when the 

subject matter experts have difficulty mapping them.  

 

This raises the question: what is the “sweet spot” for spatial resolution? 5cm imagery is 

great, but it may include more detail than necessary, and the acquisition process is not 

feasible for larger fires, requiring manual acquisition flights. At 1.8 meters, much of the 

detail that can be observed at 5cm is lost, and at 3 meters, it can be even more difficult to 

recognize. Future work could be conducted to analyze the different imagery products on 

the same fire and explore newer imagery products such as Planet’s Pelican [18] satellites, 

which provide 30cm satellite imagery anywhere in the world from 12 to 30 times per day. 

 

Daily Imagery 

Through Planet’s Education and Research Program, the university can download 5000 

square kilometers of PlanetScope imagery per month [17]. Since PlanetScope satellites 

can acquire imagery anywhere in the world at least once a day, it is possible that 

additional insights can be obtained from daily images. Additional work may involve 

using day-by-day imagery to predict where a fire will spread in the future. 
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Unsupervised Learning 

The FDL wildfire team successfully mapped wildfires from satellite imagery without 

training data. While these models are very complex, require large computational power to 

train, and can be difficult to explain, unsupervised learning has very good potential to 

map burned areas or predict wildfire behavior. Once completed, end users can detect 

wildfire in images not used in training or trained on. More work should be done to 

continue to explore how unsupervised learning can be used to detect and prevent 

wildfires. 

 

Develop Applications that Implement Burn Extent Mapping Tools 

There is also room to develop software that allows end users to perform these mappings 

of burned areas much more quickly. For example, an app with a Graphical User Interface 

(GUI) could be created so that users can specify an input image and receive a classified 

image showing the burned area. The source could be a downloaded satellite image or an 

image in the cloud. The selected image will be used as input for an already trained 

support vector machine or a trained deep learning model that uses unsupervised learning 

(like change detection with contrastive learning). 

 

Conclusion 

At this point, the FireMAP research team at Northwest Nazarene University has 

accurately mapped burn extent from drone imagery and high-resolution satellite imagery, 

using supervised and unsupervised machine learning methods. The past few years have 

been full of amazing opportunities to learn about data science, machine learning, remote 
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sensing data, and wildlife ecology. As someone who has always loved maps and data, 

these projects offer a unique opportunity to combine personal passion and interests with 

skills and knowledge obtained in various computer science courses. The Spatial Analysis 

and Artificial Intelligence courses taught many necessary skills to complete the research 

tasks, while courses like Advanced Database Management and Machine Learning 

provided hands-on learning opportunities through semester group projects. Additionally, 

courses like C++ Programming, Database Design/Programming, Data Structures, 

Algorithm Analysis, and Python Programming were needed to gain a foundational 

understanding of the most complex concepts used in the research. 

 

Additionally, working with Dr. Hamilton and Dr. Myers for almost three years on 

research created room for developing great relationships with the professors, the ability to 

present the team’s work at conferences and in published papers, and collaboration with 

students and professionals all over the world. It is incredible to be graduating from 

Northwest Nazarene University as an author of two published articles with two more 

publications in development. 
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Appendix A – Specifications of Different Imagery Products Used 

Imagery Product Spatial Resolution Spectral Resolution 

Drone (Hyperspatial) 5 centimeters 3 Bands (RGB) 
● Red 
● Green 
● Blue 

Worldview2  ~1.8 meters 8 Bands 
● Coastal Blue 
● Blue 
● Green 
● Yellow 
● Red 
● Red Edge 
● Near Infrared 1 
● Near Infrared 2 

PlanetScope ~ 3 meters 8 Bands 
● Coastal Blue 
● Blue 
● Green I 
● Green 
● Yellow 
● Red 
● Red Edge 
● Near Infrared 

 

 
Figure 3 - 5cm Hyperspatial Drone Imagery subsection of the Mesa Fire 
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Figure 4 - ~1.8m Worldview2 Imagery subsection of the Mesa Fire 

 
Figure 5 - ~3m PlanetScope Imagery subsection of the Mesa Fire  
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Appendix B - Resources for Code and Documentation 

All code, data, resources, and documentation can be found on the FireMAP Google 
Drive. In addition, several pieces of software are stored in GitHub repositories for easy 
access. 
 
Links to Source Code, Data, and Related Materials for Mapping Forest Burn Extent from  
Hyperspatial Drone Imagery Using Machine Learning: Materials 
 
Links to Source Code, Data, and Related Materials for Determination of Multi-Spectral 
Band Utility for Mapping Wildland Fire Burn Extent and Severity: ID3 Source Code, 
Materials 
 
Link to Source Code and Related Materials for Unsupervised Wildfire Change Detection 
based on Contrastive Learning: Source Code 
 
Link to Additional Resources on FireMAP Google Drive: FireMAP Software, FireMAP 
Presentations 
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Appendix C - Published Papers 

• Mapping Forest Burn Extent from Hyperspatial Imagery Using Machine Learning 

• Determination of Multi-Spectral Band Utility for Mapping Wildland Fire Burn Extent 

and Severity (In Progress) 

• Unsupervised Wildfire Change Detection based on Contrastive Learning 

 


